Кариотип что это такое


Анализ на кариотип: что это, показания и расшифровка результата

Анализ на кариотип — это современное лабораторное исследование, которое позволяет на генетическом уровне выявить возможные патологические нарушения, установить причину бесплодия и даже определить, будет ли здоров будущий ребенок. В полученном результате фиксируются изменения со стороны набора хромосом. Диагностическая процедура в настоящее время пользуется большим спросом, поскольку дает возможность установить уровень генетического соответствия мужчины и женщины.

Что такое анализ на кариотипирование?

Кариотип – хромосомный набор, различаемый по определенным характеристикам. Нормой является наличие 46 хромосом:

  • 44 – ответственны за схожесть с родителями (цвет глаз, волос и др.).
  • 2 – указывают на половую принадлежность.

Анализ на кариотипирование необходим для определения патологических нарушений, происходящих в организме. Лабораторная диагностика незаменима для установки причин бесплодия и наличия врожденных патологий, которые могут передаваться по наследству.

Последовательность проведения кариотипирования:

  1. Забор венозной крови и проведение в условии лаборатории отсеивания лейкоцитов одноядерного типа.
  2. Помещение биологического материала в среду с ФГА (фитогемагглютинином) и начало клеточного культивирования (митотического деления).
  3. Прекращение митоза после достижения стадии метафазы, что осуществляется при помощи колхицина.
  4. Обработка раствором гипотонического типа и изготовление микропрепаратов.
  5. Изучение и фотографирование при помощи специального микроскопа образовавшихся клеток.

Только через 2 недели специалисты в условиях лаборатории получают результат проведенного исследования. В бланке указывается информация по общему количеству хромосом, и фиксируются имеющиеся нарушения со стороны генетического кода.

Показания к кариотипированию

Назначается генетическое исследование с целью оценки репродуктивных функций пары, планирующей детей. Для постановки диагноза необходима полная картина генетических особенностей. На основании полученных результатов можно искать пути для решения имеющейся проблемы, при ее наличии. Кариотипирование направлено на определение в биологическом образце количества, формы и размера хромосом.

При наличии каких-либо нарушений, имеют место проблемы со стороны внутренних систем и органов. В некоторых случаях полностью здоровые люди являются носителями генетической мутации. Визуально определить это не представляется возможным. Как следствие – проблемы с зачатием, пороки развития или рождение нездорового ребенка.

К проведению кариотипирования существуют следующие медицинские показания:

  • возрастной порог от 35 лет и старше;
  • прерывание беременности и бесплодие;
  • гормональные нарушения в женском организме;
  • облучение или отравление химикатами;
  • загрязненная экология и наличие вредных привычек;
  • наследственная предрасположенность и кровные браки;
  • наличие мутации хромосом у предыдущих детей.

Анализ крови на кариотип нужно проводить однократно, т. к. с возрастом данные характеристики не меняются. Абсолютное показание к кариотипированию – проблема зачатия и невозможность выносить беременность. В последние годы все больше молодых пар сдают данный анализ, с целью убедиться в рождении здоровы детей. Лабораторная диагностика дает возможность оценить вероятность появления на свет малыша с отклонениями, вызванными нарушением со стороны хромосом и выявить истинную причину бесплодия.

Подготовка к кариотипированию

Для кариотипирования используются кровяные клетки, поэтому перед сдачей анализа нужно подготовиться, исключив воздействие сторонних факторов, осложняющих их рост. В противном случае проведенное исследование будет низко информативным.

Подготовку необходимо начинать за 2 недели:

  1. Исключить алкоголь, курение и вредные продукты.
  2. Обсудить с врачом прекращение медикаментозной терапии.
  3. За 9-11 часов до забора биологического материала исключить приемы пищи.
  4. За 2-3 часа до лабораторного исследования не употреблять жидкость.

Сдача крови на кариотип осуществляется в утренние часы натощак. В случае ухудшения самочувствия, инфекционного заболевания или обострения хронических болезней, исследование откладывается до той поры, пока пациент не выздоровеет.

При соблюдении рекомендаций по подготовке, кариотипирование позволяет определить:

  • Анеуплоидию (изменение количества). При некачественном биологическом материале могут возникнуть сложности в процессе диагностики.
  • Структурные отклонения – соединенные комбинации после разделения. Исследование выявляет крупные нарушения. С целью выявления мелких отклонений назначается микроматричный хромосомный анализ.

Виды диагностики

Кариотипирование проводится несколькими способами, которые отличаются между собой подходом к исследованию и источниками биологического материала:

  1. Классический – для исследования берется венозная кровь (10-20 мл). У беременных женщин для проведения диагностики может потребоваться забор околоплодных вод. В некоторых случаях клетки берут из костного мозга. Хромосомы окрашивают и исследуют посредством светового микроскопирования.
  2. SKY (спектральный) – новая методика, которая считается максимально эффективной, т. к. позволяет наглядно и быстро проводить идентификацию нарушений. В данном случае части хромосом обнаруживаются с помощью флуоресцентных меток без культивирования клеток. Используется в том случае, когда стандартное кариотипирование не дало результата.
  3. FISH-анализ (флуоресцентная гибридизация) – исследование проводится особым образом и подразумевает специфическое связывание определенных участков хромосом и флуоресцентных меток. Для лабораторной диагностики осуществляется забор эмбриональных клеток или эякулята.

Для получения максимально точного результата анализ крови проводится вкупе с другими, не менее информативными, генетическими тестами.

Как расшифровать

Постановкой диагноза на фоне полученного результата кариотипирования, занимается генетик. Специалист проводит тщательный анализ и делает заключение, в котором указывает причины нарушений со стороны репродуктивных функций или рождения нездорового ребенка.

Расшифровка анализа позволяет определить следующие генетические нарушения:

  • наличие генетически различных клеток;
  • перемещение участков генетического кода;
  • разворот или удвоение хромосомы;
  • отсутствие одного фрагмента или присутствие лишнего.

С помощью кариотипирования удается установить предрасположенность к развитию гипертонии, артрита, инфаркта миокарда, инсульта и сахарного диабета. Благодаря данному анализу тысячи супружеских пар установили причину бесплодия и успешно излечились от имеющихся нарушений в организме.

Отклонения возможны как со стороны мужского, так и со стороны женского организма. Нормальные показатели:

  • у мужчин — 46XY;
  • у женщин — 46XX.

У детей наблюдаются следующие нарушения со стороны генетического кода:

  1. 47XX+21 или 47XY+21 – синдром Дауна (наличие лишней хромосомы).
  2. 47XX+13 или 47XY+13 – синдром Патау.

Есть и иные отклонения от нормы, которые являются менее опасными. Только генетик может риски появления нездорового ребенка на счет для каждого индивидуального случая. Если при кариотипировании были обнаружены опасные нарушения или мутации, то врач рекомендует прерывание беременности.

Кариотипирование дает оценку не только количеству, но и состоянию генов:

  • Мутации, вызывающие тромбообразование, нарушающее питание мелких сосудов в момент формирования плаценты, что является причиной выкидышей.
  • Патологии со стороны гена муковисцидоза, с целью исключения вероятности развития определенного заболевания у ребенка.
  • Генные нарушения со стороны Y-хромосомы.
  • Отклонения со стороны генов, которые отвечают за способности обеззараживания токсических факторов.

При обнаружении делеции (потери участка) в Y-хромосоме речь идет о мужском бесплодии из-за нарушенного сперматогенеза. Это является причиной возникновения наследственных болезней.

Что делать, если обнаружены отклонения

Для исключения вероятности генетических отклонений у ребенка, следует еще до зачатия проверить кариотип у обоих родителей. При наличии генетических нарушений врач пояснит возможные риски. Не стоит впадать в панику при обнаружении хромосомных мутаций. Даже в таком случае можно выносить беременность и родить здоровог если будут обнаруженыо ребенка, соблюдая рекомендации врача.

Планирование ребенка позволяет подготовить организм матери и отца к зарождению здорового потомства и определить риски рождения нездоровых детей. Даже после того, как женщина забеременела, в первую неделю можно сделать кариотипирование для оценки возможных рисков, что позволяет вовремя принять меры для предотвращения выкидыша. При наличии серьезных генетических мутаций решение по поводу прерывания беременности принимает супружеская пара. Врач только указывает на возможные последствия и дает рекомендации при необходимости прерывания.

Заключение

Генетика в настоящее время представляет сбой развитую научную отрасль. При помощи современных диагностических анализов можно выявить происходящие отклонения на начальных формах прогрессирования и принять меры для борьбы с ними. Благодаря кариотипированию удается вылечить бесплодие, предотвратить повторные выкидыши и исключить вероятность рождения детей с генетической мутацией. Планируя семью, не будет лишним провериться на генетическую совместимость.

Рекомендуется ознакомиться: мазок ПЦР — для чего нужен и что может выявить?

Кариотип - это... Что такое Кариотип?

Рис. 1. Изображение набора хромосом (справа) и систематизированный женский кариотип 46 XX (слева). Получено методом спектрального кариотипирования.

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Процедура определения кариотипа

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток. Для определения человеческого кариотипа используют, как правило, лимфоциты периферической крови, переход которых от стадии покоя G0 к пролиферации провоцируют добавлением митогена фитогемагглютинина. Для определения кариотипа могут быть использованы также клетки костного мозга или первичная культура фибробластов кожи. Для увеличения числа клеток на стадии метафазы к культуре клеток незадолго перед фиксацией добавляют колхицин или нокадазол, которые блокируют образование микротрубочек, тем самым препятствуя расхождению хроматид к полюсам деления клетки и завершению митоза.

После фиксации препараты метафазных хромосом окрашивают и фотографируют; из микрофотографий формируют так называемый систематизированный кариотип — нумерованный набор пар гомологичных хромосом, изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом, получали окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможной с появлением методик дифференциального окрашивания хромосом. Наиболее часто используемой методикой в медицинской генетике является метод G-дифференциального окрашивания хромосом.

Классический и спектральный кариотипы

Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. banding), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локали­зуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание) [1] Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:[2]

  • Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом)
  • G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы)
  • R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
  • C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
  • T-окрашивание — применяют для анализа теломерных районов хромосом.

В последнее время используется методика т. н. спектрального кариотипирования (флюоресцентная гибридизация in situ, англ. Fluorescence in situ hybridization, FISH), состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом[3]. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами — транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Анализ кариотипов

Сравнение комплексов поперечных меток в классической кариотипии или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации — внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии, транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом).

Номенклатура

Рис.3. Кариотип 46,XY,t(1;3)(p21;q21), del(9)(q22): показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (потеря участка) 9-й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски) так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромо­сом и позволяющая подробно описывать отдельные хромосомы и их участки. Запись имеет следующий формат:

[номер хромосомы] [плечо] [номер участка].[номер полосы]

длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначаются дополнительными символами.

Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2.

Для кариотипа используется запись в системе ISCN 1995[4], имеющая следующий формат:

[количество хромосом], [половые хромосомы], [особенности][5].

Для обозначения половых хромосом у различных видов используются различные символы (буквы), зависящие от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца — XY. У птиц же самки гетерогаметны, а самцы гомогаметны, то есть запись половых хромосом самки ZW, самца — ZZ.

В качестве примера можно привести следующие кариотипы:

  • нормальный (видовой) кариотип домашнего кота: 38, XY
  • индивидуальный кариотип лошади с «лишней» X-хромосомой (трисомия по X-хромосоме): 65, XXX
  • индивидуальный кариотип домашней свиньи с делецией (потерей участка) длинного плеча (q) 10-й хромосомы: 38, XX, 10q-
  • индивидуальный кариотип мужчины с транслокацией 21-х участков короткого (p) и длинного плеч (q) 1-й и 3-й хромосом и делецией 22-го участка длинного плеча (q) 9-й хромосомы (приведён на Рис. 3): 46, XY, t(1;3)(p21;q21), del(9)(q22)

Поскольку нормальные кариотипы являются видоспецифичными, то разрабатываются и поддерживаются стандартные описания кариотипов различных видов животных и растений, в первую очередь домашних и лабораторных животных и растений[6].

Аномальные кариотипы и хромосомные болезни

Основная статья: Хромосомные болезни

Нормальные кариотипы человека — 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Однако нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое число плодов (~2.5 %[источник не указан 1313 дней]) с аномальными кариотипами донашивается до окончания беременности.

Некоторые болезни человека, вызванные аномалиями кариотипов[7],[8] Кариотипы Болезнь Комментарий
47,XXY; 48,XXXY; Синдром Клайнфельтера Полисомия по X-хромосоме у мужчин
45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq) Синдром Шерешевского — Тёрнера Моносомия по X хромосоме, в том числе и мозаицизм
47,ХХX; 48,ХХХХ; 49,ХХХХХ Полисомии по X хромосоме Наиболее часто — трисомия X
47,ХХ, 21+; 47,ХY, 21+ Синдром Дауна Трисомия по 21-й хромосоме
47,ХХ, 18+; 47,ХY, 18+ Синдром Эдвардса Трисомия по 18-й хромосоме
47,ХХ, 13+; 47,ХY, 13+ Синдром Патау Трисомия по 13-й хромосоме
46,XX, 5р- Синдром кошачьего крика делеция короткого плеча 5-й хромосомы
46 XX или ХУ, 15р-. Синдром Прадера-Вилли Аномалия 15 хромосомы

Кариотип некоторых биологических видов

Каждый вид организмов обладает характерным и постоянным набором хромосом. Количество диплоидных хромосом разнится от организма к организму:

Кариотип гоминидов

У человека нормальный кариотип состоит из 46 хромосом. Тогда как у шимпанзе, гориллы — 48.

См. также

Примечания

  1. ↑ Caspersson T. et al. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 219—222 (1968).
  2. ↑ Р. Фок. Генетика эндокринных болезней//Эндокринология (под ред. Нормана Лавина) М., «Практика», 1999
  3. ↑ E. Schröck, S. du Manoir et al.. Multicolor Spectral Karyotyping of Human Chromosomes. Science, 26 Jul 1996; 273 (5274):494 (in Reports)
  4. ↑ ISCN (1995): An International System for Human Cytogenetic Nomenclature, Mitelman, F (ed); S. Karger, Basel, 1995
  5. ↑ ISCN Symbols and Abbreviated Terms//Coriell Institute for Medical Research
  6. ↑ Resources for Genetic and Cytogenetic Nomenclature//Council of Science Editors
  7. ↑ Международная классификация болезней. Врожденные аномалии [пороки развития], деформации и хромосомные нарушения (Q00-Q99), Хромосомные аномалии, не классифицированные в других рубриках (Q90-Q99)
  8. ↑ Хромосомные болезни//НЕВРОНЕТ

Кариотип человека что это? Определение термина

Содержание

Сдать анализ на кариотип

Определение кариотипа человека. История исследования

Невозможность зачать и произвести на свет здорового ребенка — проблема многих пар. Бесплодие часто называют болезнью современного общества, однако это не совсем так. Объективные причины, когда появлению потомства у конкретных мужчины и женщины препятствует сама природа, существовали всегда. Одна из главных — нарушения в кариотипах потенциальных родителей.

Что включает в себя это понятие? Возникновению термина современная наука обязана советскому ученому Григорию Левитскому, который в 20-х годах ХХ века проводил глубокие исследования в области цитологии. В дальнейшем его идеи были развиты зарубежными коллегами Сирилом Дином Дарлингтоном и Майклом Дж. Д. Уайтом, изучавшими вопросы наследственности.

Кариотип объединяет все признаки хромосомного набора: их количество, величину, форму и т. д. Термин может относиться:

  • К целому биологическому виду: например, кариотип человека, медведя, лягушки и проч.
  • К отдельно взятому организму. Характеризуется индивидуальными особенностями хромосом.

Учеными установлены главные свойства кариотипа:

  • Содержит все генетические «сведения» о своем владельце.
  • Половина информации закладывается от матери, другая — от отца.
  • В течение жизни организма не испытывает никаких изменений.

Роль хромосом в развитии организма, их виды и строение

Структуры внутри ядра клетки-эукариота, состоящие из комплексов белков и нуклеиновых кислот, называют хромосомами. Они отвечают за наследственную информацию, ее хранение, проявления и передачу следующим поколениям. Основа хромосомы — ДНК. Каждая из таких структур содержит в себе разные гены. Поэтому даже в одном наборе хромосомы нельзя считать равноценными.

Нормальный кариотип организма человека включает в себя 46 нуклепротеидных структур. Это 44 гомологичных аутосом и две, отвечающие за половые признаки. Кариотип мужчины обозначают как 46,XY, женщины — 46,XX.

Аутосомы гомологического типа разделяют исходя формы и величины на 7 категорий, которые обозначают первыми буквами латинского алфавита. Кроме этого, таким хромосомам присваивают числа от одного до 22 по мере того, как уменьшается длина структуры.

Аутосомы классифицируют и в зависимости от того, как расположена первичная перетяжка, именуемая центромерой. Она служит разделением двух сестринских хроматид, которые в результате образуют так называемые плечи структуры. Для обозначения длинного используют букву q, короткого — p.

  • При срединном размещении перетяжки хромосомы называют метацентрическими, или равноплечими.
  • При расположении в районе одного конца — субметацентрическими. Значения q и p существенно различаются.
  • При нахождении в области теломерного участка — акроцентрическими. У таких хромосом на коротком плече имеются спутники, характеризующиеся присутствием генов рРНК.

Итак, по совокупности признаков хромосомы в кариотипе человеческого организма принято объединять в 7 больших категорий:

  • A. Сюда входят равноплечие аутосомы самых крупных размеров под первыми тремя номерами.
  • B. Представляет собой объединение 2 пар гомологов субметацентрического типа с номерами 4-5.
  • C. Группа состоит из 7 пар структур средней величины, также субметацентриков, пронумерованных от 6 до 12. Сюда же обычно включается и женская половая хромосома Х, поскольку имеет идентичное строение и внешний вид.
  • D. Здесь разместились хромосомы-акроцентрики: 3 пары средней величины с номерами от 13 до 15.
  • E. Объединяет пару, зафиксированную под цифрой 16, — в этой аутосоме первичная перетяжка локализована медианным образом. Сюда же относятся гомологи 17 и 18 с небольшой общей длиной и короткими плечами.
  • F. Место самых маленьких хромосом-метацентриков (19-ый и 20-ый номера). 
  • G. Здесь сосредоточены мельчайшие из гомологов акроцентрического типа (21-ый и 22-ой).

Сдать анализ на кариотип

Отвечающая за мужской пол хромосома Y тоже принадлежит к последней группе и все же стоит особняком, потому что почти всегда имеет ярко выраженные внешние отличия.

Из чего складывается кариотип ребенка: влияние отцовского и материнского хромосомных наборов

Современные методы позволяют определить врожденные патологии на самой ранней стадии развития: именно тогда проявляются аномалии кариотипа. Чаще всего нарушения возникают в период продуцирования родительских половых клеток — гематогенеза. Это влечет за собой патологические изменения структуры зиготы, а затем всех эмбриональных клеток и впоследствии развивающегося организма.

Кариотипы женщины и мужчины дают ребенку совокупность наследственных признаков, которая складывается из цвета кожи, волос, глаз, роста, особенностей голоса и т. д. К сожалению, также от родителей малышу может передаваться и предрасположенность к ряду хронических заболеваний:

  • Недугам сердечно-сосудистой системы. Вовсе не обязательно, что, став взрослым, ребенок обязательно получит ИБС, но есть вероятность унаследовать факторы, которые способствуют ее появлению. Речь идет о нарушениях обмена холестерина, патологиях почек и гормональной системы.
  • Сахарному диабету 2-го типа. Его возникновение регулируется целой группой генов, и в наследство ребенок получает опять-таки лишь предрасположенность. Болезнь может развиться при ожирении, перенесенных вирусных инфекциях.
  • Стоматологическим проблемам. Младенец наследует размер зубов родителей, строение и степень прочности тканей, особенности челюстей и состав слюны. Поэтому если отец и мать страдают кариесом, то ребенку грозит повышенная опасность столкнуться с теми же неприятностями.
  • Алкоголизму. Наследственная предрасположенность к этому недугу установлена учеными лишь недавно. В данном случае речь идет о передаче нервно-психических расстройств и нарушений в работе систем, отвечающих за нормальный обмен ферментов.

Это неполный список недугов, риск возникновения которых может быть заложен в кариотип ребенка. Однако в данном случае медики говорят лишь о 22-50 процентах вероятности заболеть. Правильный образ жизни и внимательное отношение к своему здоровью помогут «обойти» наследственность и избежать неприятных диагнозов.

Что показывает кариотип: вероятность хромосомных болезней, их виды, отличительные особенности, прогноз

Иначе складывается ситуация, когда патологиями поражен непосредственно генетический материал отца, матери или обоих родителей. Не имея никаких клинических проявлений, аномалии кариотипа, нарушения строения и функций хромосом грозят весьма печальными последствиями:

  • Бесплодием — невозможностью пары зачать собственного ребенка.
  • Спонтанными абортами. В первые три месяца беременности порядка 60 процентов выкидышей происходит по причине именно генетических аномалий. Из этого числа половина случаев приходится на долю трисомий различного характера, около 25 процентов возникает по причине полиплодии, в остальных ситуациях диагностируют моносомию по Х-составляющей.
  • Если патологические изменения в кариотипе человека произошли, когда дробилась зигота, то разовьется организм с несколькими клеточными линиями или клонами. Все они будут иметь разные хромосомные наборы. Это явление получило название мозаицизм. С ним связан ряд генетических болезней.

В ряду наследственных недугов хромосомным патологиям отводят одно из ведущих мест. Большинство аномалий несовместимы с жизнью в постнатальном периоде. Поэтому если у зародыша «искаженный» кариотип, строение и функции которого существенно нарушены, то, вероятнее всего, на 7-14 день развития произойдет естественная элиминация — удаление из организма матери.

Другую часть таких эмбрионов ждет участь ранних выкидышей. Процент выживаемости плода с поврежденными хромосомами колеблется по разным данным от 0,5 до 2. В этом случае на свет появляется ребенок с аномальным кариотипом, признаки которого можно обнаружить сразу после рождения. Чаще всего речь идет о следующих хромосомных заболеваниях:

  • Синдроме Дауна. Причину определяют, как трисомию по 21 хромосоме.
  • Синдроме кошачьего крика. Здесь дело в делеции короткого плеча 5 хромосомы.
  • Синдроме Патау. Вызван трисомией по 13 хромосоме.
  • Синдроме Шерешевского-Тернера. Причина в моносомии по Х-структуре, включающей мозаицизм.
  • Синдроме Клайнфельтера. Возникает из-за полисомии у мужчин по Х-хромосоме.
  • Синдроме Эдвардса. Появляется по причине трисомии по 18 хромосоме.

По статистике, дети, рожденные с генетическими отклонениями, составляют около 1 процента всех младенцев. Однако заболеваний, связанных с нарушением нормального кариотипа, сегодня известно свыше 700. Более 46 процентов из них связаны с патологическим изменением хромосом, отвечающих за пол. Из-за отклонений в структуре или количестве аутосомных составляющих возникает порядка 25 процентов аномалий. Чуть более 10 процентов недугов появляются из-за структурных перестроек:

  • Транслокаций. Так именуют процессы «обмена» фрагментами между разными хромосомами.
  • Делеций. Хромосома теряет определенный участок.
  • Дупликаций. Появляется копия какого-либо фрагмента структуры, причем помещается или рядом с оригиналом, или на другом конце цепочки, или «выбирает» абсолютно другую хромосому.
  • Инверсий. Фрагменты структуры поворачиваются на 180 градусов.

Заболевания, вызванные нарушениями кариотипа ребенка, приводят к появлению внешних признаков, характерных для того или иного недуга. Это может быть плоское лицо, деформация ушных раковин, избыток пигментации кожи и другие выраженные свойства. Отмечаются аномалии в строении скелета, а также болезни внутренних органов: пороки со стороны сердечно-сосудистой системы, почек. В ряде случаев, хотя и далеко не во всех, хромосомные патологии сопровождаются отсталостью умственного развития.

Прогноз продолжительности жизни зависит от конкретной генетической аномалии. Чаще всего дети с поврежденным кариотипом погибают в первые годы или даже месяцы жизни. Однако, например, пациенты с синдромом Орбели нередко перешагивают 40-летний рубеж.

Современные методы исследования кариотипа: показания и технологии

Научные достижения в области медицины и генетики позволяют с точностью проанализировать хромосомный набор человека на предмет отклонений. Это незаменимо как для лечения бесплодия, так и для оказания помощи ребенку, рожденному с генетическими патологиями. Выяснить, что показывает кариотип, специалисты настоятельно рекомендуют в случаях:

  • проблем с зачатием ребенка при наличии регулярных незащищенных половых контактов;
  • присутствия в анамнезе женщины двух и больше выкидышей;
  • олигозооспермии или азооспермии не обструктивного типа;
  • замершей беременности;
  • отклонений в половом развитии;
  • возраста будущей мамы старше 35 лет;
  • наличия генетических отклонений у близких родных;
  • смертности детей до года в семье;
  • рождения мертвого младенца;
  • подозрения на хромосомное заболевание у новорожденного малыша;
  • подбора доноров спермы или ооцитов.

Кариотип изучают методами цитогенетики. Исследование может быть пренатальным, когда речь идет о наборе хромосом плода, и касающимся биоматериала ребенка или взрослого пациента.

Для анализа кариотипа женщины, мужчины или малыша используют хромосомы в стадии метафазы митоза. На этом этапе деления их легко наблюдать. Материал получают из лимфоцитов — источником служит периферическая кровь. Иногда берут первичную культуру кожных фибробластов или клетки костного мозга.

После забора материала переходят к трем лабораторным стадиям цитогенетического исследования. Первая называется культивированием клеток:

  • Процесс проводят в солевой питательной среде, куда добавляют цельную сыворотку, выделенную из организма крупного рогатого скота, а также белок бобовых культур. В этом веществе содержится фитогемагглютинин, который стимулирует клетки к делению.
  • Для полноценного исследования необходимо задействовать как можно больше хромосом, проходящих метафазу. Чтобы увеличить это число, за 1,5 часа до завершения культивирования в среду добавляют колхицин.
  • Первый этап анализа кариотипа человека длится около 72 часов. Затем клетки помещают в центрифугу, а после обрабатывают специальным химическим раствором. В результате разрушаются оболочка ядра и связи между хромосомами — они могут теперь свободно перемещаться в цитоплазме.
  • С помощью смеси уксусной кислоты и метанола отдельные клетки фиксируются, а полученная суспензия помещается на предметных стеклах и высушивается.

Сдать анализ на кариотип

Вторая стадия анализа кариотипа организма заключается в окрашивании материала. Исходя из того, какие именно перестройки или иные нарушения предполагается выявить в ходе исследования, может быть выбрана разная методика:

  1. Рутинная или сплошная. Эту простую технологию, именуемую способом Романовского — Гимзы, с успехом применяли еще 40 лет назад. Хромосомный материал равномерно красят по всей длине специальным веществом. Метод полезен для идентификации хромосом и подсчета их числа в приготовленном препарате. Технология позволяла обнаружить синдромы, вызванные количественными изменениями структур в кариотипе человека. С этой же целью сплошной способ используют и сегодня.
  2. Для выявления перестроек хромосом необходима более точная технология. Ею стало окрашивание препарата дифференциальным методом. Участки структуры реагируют на воздействие красителя по-разному. Получаются характерные полоски, с помощью которых можно определить дефекты и изменения, индивидуальные для каждой исследуемой хромосомы. Идея метода получения детализированных изображений принадлежит ученому-цитологу из Швеции Касперссону.
  3. Сегодня специалисты в области лечения генетических заболеваний и репродукции человека предпочитают использовать дифференциальную окраску G-способом в силу его простоты и в то же время точности. Воздействуют на хромосомы по-прежнему красителем Гимзы, однако после первичной обработки трипсиновым раствором. Всего через 10 минут получают уникальный для каждой хромосомы рисунок.
  4. Более редкие методы применяют для узкоспециальных исследований. Так, R-окраска помогает выявить изменения на тех фрагментах структуры, которые не чувствительны к G-красителю. Метод, маркированный буквой C, предназначен для еще более детального анализа: направлен на изучение участков длинных плеч рядом с  центромерой 1-ой, 9-ой и 16-ой хромосом.

На третьей стадии анализа кариотипа ребенка или взрослого человека окрашенные препараты исследуют с помощью светового микроскопа. Для результативной работы и уверенности в наличии или отсутствии конкретных генетических отклонений необходимо изучить не меньше 30 образцов. При подозрении на мозаичные формы патологий количество анализируемых пластинок возрастает. В этом случае берут не только лимфоциты, но и клетки тканей.

Кариотипирование в клинике NGC: революционная методика диагностики

Еще несколько лет назад исследование кариотипа, его строения и функций назначалось лишь при бесплодии и только в том случае, когда все прочие анализы были уже сделаны и не дали результатов. Сегодня ученые установили, что генетическое отклонение может быть причиной болезни в сочетании с другими причинами, усиливать их и провоцировать развитие недуга. Поэтому сегодня в передовых медицинских учреждениях в обязательном порядке выясняют, что показывает кариотип: анализ проводят в рамках комплексного обследования.

Клиника NGC стала пионером в применении революционного метода кариотипирования. Специалисты центра генетики и репродукции используют преимплантационную генетическую диагностику (ПГД), которая с точностью до 99,9 процента распознает отклонения в хромосомном наборе эмбриона.

Такой способ анализа кариотипа человека эффективен при проведении процедуры экстракорпорального оплодотворения. Ведь прежде далеко не всякая имплантация эмбриона в чрево биологической или суррогатной мамы заканчивалась успешной беременностью. Теперь вероятность долгожданного положительного результата увеличена до 74%. Этого удается достичь благодаря исключению нежизнеспособных эмбрионов. Количество процедур ЭКО, которые не принесли эффекта, значительно снижается. При этом:

  • Сокращается срок применения гормоносодержащих препаратов для стимуляции. Воздействие медикаментов на женский организм становится более щадящим.
  • Полностью исчезает опасность передать ребенку наследственные заболевания, поскольку для имплантации выбирают только те эмбрионы, которые не затронула генетическая аномалия.
  • Исключается рождение малыша с тяжелыми хромосомными отклонениями. 

Технологию NGS для исследования кариотипа организма на преимплантационной стадии клиника NGC внедрила одной из первой в России и СНГ. Специалисты учреждения применяют способ с 2015 года. Новыми возможностями пациенты могут воспользоваться благодаря высокому профессионализму врачей и уникальному секвенатору MiSeqDx, прошедшему регистрацию в FDA.

Вспомогательные репродуктивные технологии как способ преодолеть отклонения в кариотипе женщины или мужчины

На современном этапе повреждения в кариотипе мужчины или женщины перестали быть непреодолимым препятствием к тому, чтобы воспитывать родного ребенка. На помощь приходят новейшие достижения: использование донорского материала, а также программа суррогатного материнства.

Сегодня клиника NGC предлагает:

  • Весь спектр медико-генетических исследований кариотипа человека как традиционными методами, так и с применением передовых методик при проведении ЭКО.
  • Возможность подобрать донора, подходящего по всем кариотипическим параметрам. Сделать это нетрудно уже в день обращения.
  • Разработку плана лечения строго с учетом индивидуальных особенностей пациентки или пары.
  • Внимательное отношение квалифицированного персонала и комфортные условия в специализированной клинике.

Главный принцип нашей работы — обеспечить максимальный результат и здоровое будущее родителям и малышу, который обязательно появится, если в это верить.

Специалисты по лечению, врачи:

Заведующая отделением клинической генетики, врач-генетик

Кариотипирование супругов

Кариотипирование является методом цитогенетического исследования и заключается в изучении хромосом человека.

В процессе исследования хромосомного набора (кариотип) определяются изменения в количественном составе и выявляются нарушения структур (качество) хромосом.

Кариотипирование проводится один раз в жизни и позволяет определить геном мужчины и женщины, состоящих в браке, выявить несоответствие хромосом супругов, что может явиться причиной рождения ребенка с пороком развития или тяжелым генетическим заболеванием, а также позволяет установить причину, по которой невозможно иметь детей у данной семейной пары.

Кариотип – это набор хромосом человека с полным описанием всех их признаков (размер, количество, форма и прочее). Геном каждого человека в норме состоит из 46 хромосом (23 пары). 44 хромосомы являются аутосомными и отвечают за передачу наследственных признаков в роду (цвет волос, строение ушей, острота зрения и так далее). Последняя, 23-я пара представлена половыми хромосомами, которые и определяют кариотип женщины 46ХХ и мужчины 46ХУ.

Показания для кариотипирования

В идеале, кариотипирование необходимо пройти всем супругам, желающим стать родителями, даже если показания для проведения анализа отсутствуют.

Многие наследственные заболевания, которыми страдали прадедушки и прабабушки могут не проявляться у человека, а кариотипирование поможет выявить патологическую хромосому и рассчитать риск рождения ребенка с патологией.

К обязательным показаниям для проведения процедуры относятся:

  • возраст будущих родителей (35 лет и старше, даже если этому пункту отвечает только один из супругов);
  • бесплодие неустановленного происхождения;
  • многократные и безуспешные попытки искусственного оплодотворения (ЭКО);
  • наличие наследственного заболевания у одного из супругов;
  • расстройства гормонального баланса у женщины;
  • нарушение образования сперматозоидов (сперматогенеза) с неустановленной причиной;
  • неблагоприятное экологическое окружение;
  • контакт с химическими веществами и облучающее воздействие;
  • воздействие вредных факторов на женщину, особенно в недавнем прошлом: курение, алкоголь, наркотики, прием лекарственных препаратов;
  • наличие самопроизвольного прерывания беременности (выкидыши, преждевременные роды, замершие беременности);
  • близкородственные браки;
  • наличие ребенка/детей с хромосомными патологиями или врожденными пороками развития.

Процедуру исследования кариотипов супругов необходимо провести еще на этапе планирования беременности. Но не исключается возможность кариотипирования в том случае, если женщина беременна. Тогда проводится кариотипирование не только супругов, но и будущего ребенка (пренатальное кариотипирование).

Подготовка к анализу

Так как для анализа на определение кариотипа используются кровяные клетки, необходимо исключить влияние различных факторов, которые осложняют их рост, что делает анализ неинформативным.

Примерно за 2 недели до сдачи крови на анализ кариотипирования следует предотвратить или отказаться от воздействия следующих факторов:

  • наличие острых заболеваний или обострение хронических;
  • прием лекарственных препаратов, особенно антибиотиков;
  • употребление алкоголя и курение.

Механизм проведения

Предпочтение отдается венозной крови, которую забирают у обоих супругов. Из венозной крови отсеиваются лимфоциты, которые находятся в фазе митоза (деления). В течение трех суток анализируется рост и размножение клеток, для чего лимфоциты обрабатывают митогеном, который стимулирует митоз. В процессе деления исследователь может наблюдать хромосомы, но процесс митоза останавливают путем специальной обработки. Затем готовятся специальные препараты хромосом на стекле.

Чтобы лучше выявить структуру хромосом, их окрашивают. Каждая хромосома имеет свою индивидуальную исчерченность, что становится хорошо заметным после окрашивания. Затем проводится анализ окрашенных мазков, во время которого определяется общее количество хромосом и структура каждой. При этом сопоставляется исчерченность парных хромосом, а полученный результат с нормами цитогенетических схем хромосом.

Для анализа обычно требуется не более 12-15 лимфоцитов, данное количество клеток позволяет выявить количественное и качественное несоответствие хромосом, а, следовательно, наследственное заболевание.

Что выявляет кариотипирование

Интерпретацию анализа на кариотипирование проводит врач-генетик. Анализ в норме выглядит как 46ХХ или 46ХУ. Но если выявлена какая-либо генетическая патология, например выявление третьей лишней 21 хромосомы у женщины, то результат будет выглядеть как 46ХХ21+.

Что позволяет определить анализ хромосомного набора:

  • трисомия – третья лишняя хромосома в паре (например, синдром Дауна);
  • моносомия – в паре отсутствует одна хромосома;
  • делеция – утрата участка хромосомы;
  • дупликация – удвоение какого-либо фрагмента хромосомы;
  • инверсия – разворот участка хромосомы;
  • транслокация – перемещение участков (рокировка) хромосомы.

Например, обнаружение делеции в У-хромосоме часто является причиной нарушенного сперматогенеза и, следовательно, мужского бесплодия. Также известно, что делеции являются причиной некоторых врожденных патологий у плода.

Для удобства отображения на бумаге результата анализа при обнаружении изменения структуры хромосомы, длинное плечо записывается латинской буквой q, а короткое t. Например, при потере фрагмента короткого плеча 5-ой хромосомы у женщины, результат анализа будет выглядеть так: 46ХХ5t, что означает синдром «кошачьего крика» (генетическое отклонение, характеризующееся характерным плачем ребенка и другими врожденными нарушениями).

Кроме того, кариотипирование позволяет оценить состояние генов. Путем данного метода исследования можно выявить:

  • генные мутации, которые влияют на тромбообразование, что нарушает кровоток мелких сосудах при формировании плаценты или имплантации и может стать причиной выкидыша/бесплодия;
  • генная мутация У-хромосомы (в данном случае необходимо использовать сперму донора);
  • мутации генов, отвечающих за детоксикацию (низкая способность организма к обеззараживанию окружающих токсических факторов);
  • генная мутация в гене муковисцидоза помогает исключить возможность данного заболевания у ребенка.

Кроме того, кариотипирование помогает диагностировать генетическую предрасположенность ко многим заболеваниям, например, к инфаркту миокарда, сахарному диабету, гипертонической болезни, патологии суставов и пр.

Что делать при отклонениях

В случае обнаружения генных мутаций или хромосомных аберраций у одного из супругов на этапе планирования беременности, врач-генетик объясняет паре вероятность рождения больного ребенка и возможные риски.

Как известно, хромосомная и генная патология неизлечима, поэтому дальнейшее решение ложится на плечи будущих родителей (воспользоваться донорской спермой или яйцеклеткой, рискнуть родить ребенка или остаться без детей).

При обнаружении хромосомных аномалий во время беременности, особенно у эмбриона, женщине предлагают ее прервать. Настаивать на прерывании беременности врачи не имеют права.

При некоторых хромосомных аномалиях (например, риск рождения ребенка с патологией не высокий) генетик может назначить курс определенных витаминов, которые снижают вероятность рождения больного ребенка.

Кариотип - Генетика | Биология

Кариотип можно определить как совокупность хромосом соматических клеток, в том числе особенности строения хромосом. У многоклеточных организмов все соматические клетки содержат одинаковый набор хромосом, т. е. обладают одинаковым кариотипом. У диплоидных организмов кариотип представляет собой диплоидный набор хромосом клетки.

Понятие кариотипа употребляется не столько по отношению к индивиду, сколько по отношению к виду. В этом случае говорят, что кариотип видоспецифичен, то есть каждый вид организмов обладает своим особым кариотипом. И хотя количество хромосом у разных видов может совпадать, но по своему строению они всегда имеют те или иные отличия.

Хотя кариотип в первую очередь является видовой характеристикой, он может несколько различаться у особей одного вида. Наиболее явное отличие — это неодинаковые половые хромосомы у женских и мужских организмов. Кроме того могут возникать различные мутации, приводящие к аномалии кариотипа.

Количество хромосом и уровень организации вида не коррелируют друг с другом. Другими словами, большое количество хромосом не свидетельствует об высоком уровне организации. Так у рака-отшельника их 254, а у дрозофилы только 8 (оба вида принадлежат к членистоногим); у собаки 78, а у человека 46.

Кариотипы диплоидных (соматических) клеток состоят из пар гомологичных хромосом. Гомологичные хромосомы идентичны по форме и генному составу (но не по аллелям). В каждой паре одна хромосома достается организму от матери, другая является отцовской.

Исследование кариотипа

Кариотипы клеток исследуют на стадии метафазы митоза. В этот период клеточного деления хромосомы максимально спирализованы и хорошо видны в микроскоп. Кроме того, метафазные хромосомы состоят из двух хроматид (сестринских), соединенных в области центромеры.

Участок хроматиды между центромерой и теломерой (находится на конце с каждой стороны) называется плечом. У каждой хроматиды два плеча. Короткое плечо обозначают p, длинное — q. Различают метацентрические хромосомы (плечи примерно равны), субметацентрические (одно плечо явно длиннее другого), акроцентрические (фактически наблюдается только плечо q).

При анализе кариотипа хромосомы идентифицируются не только по их размерам, но и по соотношению плеч. У всех организмов одного вида нормальные кариотипы по этим признакам (размеры хромосом, соотношение плеч) совпадают.

Цитогенетический анализ подразумевает идентификацию всех хромосом кариотипа. При этом цитологический препарат подвергают дифференциальной окраске с использованием специальных красителей, специфически связывающихся с разными участками ДНК. В результате хромосомы приобретают специфический рисунок исчерченности, что позволяет их идентифицировать.

Метод дифференциальной окраски был открыт в 60-х годах XX века и позволил в полной мере анализировать кариотипы организмов.

Кариотип обычно представляют в виде идиограммы (своеобразной схемы), где каждая пара хромосом имеет свой номер, а хромосомы одного морфологического типа объединены в группы. В группе хромосомы располагают по размеру от больших к меньшим. Таким образом, каждая пара гомологичных хромосом кариотипа на идиограмме имеет свой номер. Часто изображают только одну хромосому из пары гомологов.

Для человека, многих лабораторных и сельскохозяйственных животных разработаны схемы исчерченности хромосом для каждого метода окраски.

Хромосомные маркеры представляют собой полосы, появляющиеся при окраске. Полосы группируют в районы. Как полосы, так и районы нумеруют от центромеры к теломере. На некоторых полосах могут быть обозначены локализованные на них гены.

Запись кариотипов

Запись кариотипа несет определенную его характеристику. Вначале указывается общее число хромосом, затем набор половых хромосом. При наличии мутаций сначала указывают геномные, затем — хромосомные. Наиболее часто встречающиеся: + (дополнительная хромосома), del (делеция), dup (дупликация), inv (инверсия), t (транслокация), rob (робертсоновская транслокация).

Примеры записи кариотипов:

48, XY — нормальный кариотип самца шимпанзе;

44, XX, del (5)(p2) — кариотип самки кролика, в котором произошла деления второго участка короткого (p) плеча пятой хромосомы.

Кариотип человека

Кариотип человека состоит из 46 хромосом, что было точно определено в 1956 году.

До открытия дифференциальной окраски хромосомы классифицировались по общей длине и своему центромерному индексу, который представляет собой отношение длины короткого плеча хромосомы к ее общей длине. В кариотипе человека были найдены метацентрические, субметацентрические и акроцентрические хромосомы. Также были идентифицированы половые хромосомы.

Позже использование методов дифференциальной окраски позволило идентифицировать все хромосомы кариотипа человека. В 1970-х годах были разработаны правила (стандарт) их описания и обозначения. Так аутосомы делились на обозначаемые буквами группы, к каждой из которых относились хромосомы с определенным номером: A (1-3), B (4, 5), C (6-12), D (13-15), E (16-18), F (19, 20), G (21, 22). Половые хромосомы являются 23-й парой.

Нормальный кариотип человека записывается так:

46, XX — для женщины,

46, XY — для мужчины.

Примеры кариотипов человека с аномалиями:

47, XX, 21+ - женщина с лишней 21-й хромосомой;

45, XY, rob (13, 21) — мужчина, у которого произошла робертсоновская транслокация 13-й и 21-й хромосом.

КАРИОТИП - это... Что такое КАРИОТИП?

КАРИОТИП

(от карио... и греч. typos — образец, форма), совокупность признаков хромосомного набора (число, размер, форма хромосом), характерных для того или иного вида. Постоянство К. каждого вида поддерживается закономерностями митоза и мейоза. Изменение К. может происходить вследствие хромосомных и геномных мутаций. Обычно описание хромосомного набора проводится на стадии метафазы или поздней профазы и сопровождается подсчётом числа хромосом, морфометрией, идентификацией центромеры (первичной перетяжки), ядрышко-вого организатора (вторичной перетяжки), спутника и т. д. Большое распространение получило выявление особенностей строения хромосом благодаря дифференциальному окрашиванию их отд. участков специфич. красителями. Результаты анализа К. представляются в виде идиограмм, цитологич. карт, карио-грамм. Проанализированы К. многих тысяч растений, животных и человека. Сравнит, анализ К. широко используется в систематике (кариосистематика).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

кариоти́п

совокупность признаков хромосомного набора, характерная для каждого биологического вида. К таким признакам относятся число, размер и форма хромосом, положение на хромосомах первичной перетяжки (центромеры), наличие вторичных перетяжек, чередование гетерохроматиновых и эухроматиновых участков и др. Кариотип служит «паспортом» вида, надёжно отличающим его от кариотипов других видов. Постоянство всех признаков видового кариотипа обеспечивается точными процессами распределения хромосом по дочерним клеткам в митозе и мейозе (эти процессы могут нарушаться при хромосомных мутациях). При изучении кариотипа, которое обычно проводят на стадии метафазы клеточного цикла, используют микрофотографирование, специальные способы окраски хромосом и др. методы. Результаты представляют в виде карио-граммы (систематизированное расположение хромосом, вырезанных из микрофотографии) или идиограммы – схематического изображения хромосом, расположенных в ряд по мере убывания их длины. Сравнительный анализ кариотипов используют в кариосистематике для определения путей эволюции кариотипов, выяснения происхождения домашних животных и культурных растений, для выявления хромосомных аномалий, ведущих к наследственным болезням, и т.д.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.


Смотрите также

  • Как одевается бандаж для беременных
  • Чепчик для новорожденных крючком от 0 до 3 месяцев
  • Здоровое детское горло фото
  • Процентильные таблицы фетометрии
  • Как выявить внематочную беременность
  • Ректально что означает слово
  • Депиляция во время беременности
  • Можно ли при простуде
  • Ребенок путает день с ночью
  • Ул балчуг д 1
  • Аугментин 200 суспензия дозировка для детей
Top